Pediatric Trauma Assessment

Brian Rogge RN, BSN, EMT - P

Pediatric Trauma

• #1 Killer of children after neonatal period
• Priorities same as adult → ABC’s

Objectives

• Discuss the epidemiology of pediatric trauma
• Review the primary survey
• Identify priorities in care
• Discuss differences between adult & pediatric trauma
• Discuss pediatric trauma management
• Review the development of and guidelines for transport

• Pre-hospital providers often have:
 – Limited pediatric patient contacts
 – Limited knowledge, training, and experience specifically directed towards pediatrics
• Many other healthcare providers are similarly affected
• Children are not little adults!
• Neonate: Birth to 1 month
• Infant: 1 - 12 months
• Toddler: 1 - 3 years
• Preschooler: 3-6 years
• School age: 6 - 12 years
• Adolescent: 12 - 18 years

• Function of Age & Development
 – Does not yet understand harm or risk
 – Does not yet understand cause and effect
 – Feeling of invincibility

• Injury is the leading cause of death in children and young adults

• 1/2 of the injuries result from motor vehicles

• Neonate: infection, neglect
• Infant: infection, neglect, abuse
• Toddler: poisoning, fall
• Preschool: poisoning, fall, pedestrian
• School Age: pedestrian, fall, recreation
• Adolescent: MVA, OD/poison, recreation

• Traumatic injuries often involve blunt trauma to the head
 – Drowning leading cause of death < 4 years
 – Pedestrian leading cause of death 5 - 9 years

• Injuries from falls, motorized vehicles, bicycles, sports

• Mechanism & kinematics are critical
 – serious injuries in a child may not be evident initially
Waddell’s Triad

Pediatric Assessment Triangle

- **Appearance** - mental status, appropriate for age, body position, tone
- **Breathing** - visible movement, effort, audible sounds
- **Circulation** - skin color

Consider the possibility of serious injury if:

- the injured child has altered mental status or appears behaving inappropriately initially
- there is significant mechanism regardless of whether there are obvious injuries
 - Don’t assume the child has an isolated injury
- the injured child has evidence of poor systemic perfusion
General Assessment

- Observations of the child, family and environment are critical!
- Sick/Not Sick – Sick kids look sick
- Maintain distance
- Talk to parents. Keep child with parent
- Is the behavior appropriate for the child’s age?
- Are they consolable?
- Mental status and ABCs are critical!

Focused Exam

- Vitals signs are age dependent
 - Use pediatric vital signs charts
 - Broselow Tape

Weight

- Broselow Tape
 - (Age in years x 2) + 8 = Estimated weight in KG
 - (Age in years x 3) + 7 = Larger children

Heart Rate

- Apical auscultation
- Peripheral palpation (brachial)
- Bradycardia + sick child = Pre-morbid state
 - Child < 60
- Tachycardia may be unreliable and result from
 - Fear
 - Pain
 - Fever
Respirations

- Approximate upper limit of normal = (40 – age in years)
- As a general rule > 60/min = Danger!!
- Slow = Danger, impending arrest

Blood Pressure

- Not a good indicator of perfusion in the pediatric patient and is seldom useful

- Assess last; use other assessment findings:
 - Peripheral pulses
 - Skin color & temperature
 - Capillary refill
 - LOC

Temperature

- Normal = 37°C or 98.6°F
- Pediatric pts are more prone to hypothermia due to:
 - Large surface to volume ratio
 - Radiant heat loss
- Cold = Pediatric Trauma Patient's Worst Enemy!
 - Trauma triad of DEATH
 - Hypothermia, coagulopathy, acidosis

- Blood Pressure Lower Systolic Limit
 - (Neonate) 60 mm Hg + (2 x age years)
 - (Infant/Child) 70 mmHg + (2 x age years)
 - (> 10 years) 90 mm Hg + (2 x age years)

- Proper Cuff size
 - Width = 2/3 length of upper arm
 - Bladder encircles arm without overlap
• After exposing the patient during primary and secondary survey, cover the child to avoid hypothermia!

Head
 – Anterior Fontanelle
 • Remains open until 12 to 18 months
 • Sunken when volume depletion exists
 • Bulges with increased ICP

Brief, relevant
 – Signs/Symptoms
 – Allergies
 – Medications
 – Past Medical Problems
 – Last Food or Drink
 – Events Preceding the Illness or Injury
General Assessment Concepts

- Do not forget to talk to the child
- Avoid separating children, parents unless parent out of control
- Use appropriate sized equipment

Communication with a child
- Children understand more than they express
- Watch non-verbal messages
- Get down on child’s level
- Develop, maintain eye contact
- Tell child your name
- Show respect
- Be honest

Anatomical Differences - Airway

- Larger occiput increases neck flexion
- Large, floppy epiglottis
- Larger tongue relative to size of oropharynx
- Children younger than 10 have narrowest portion of airway below vocal cords (subglottic)
- Larynx is anterior

As a result
- Due to epiglottis, straight blade is more useful
- Difficult to lift and control epiglottis with blade
- Subglottic edema, constriction or compression results in significant airway compromise
Pediatric Intubation Considerations

- Uncuffed
 - < 1 year old: 3.5 mm ET tube
 - 1-2 year old: 4.0 mm ET tube
 - > age 2: (yrs/4) + 4 = mm ET tube

- Cuffed
 - < 1 year old: 3.0 mm ET tube
 - 1-2 year old: 3.5 mm ET tube
 - > age 2: (yrs/4) + 3.5 = mm ET tube

- Place in the sniffing position
 - Manually immobilize head in suspected C-spine injury
 - A small folded towel may need to be placed:
 - Under the head of the child > 2 years
 - Under the shoulders of the child < 2 years

- Move the tongue out of the way!

- Lift the epiglottis directly with the blade

- If bradycardia ensues, ventilate adequately before re-attempting intubation

- Pre-treat with Atropine 0.02 mg/kg per your protocol

- Consider NG or OG tube if excessive gastric distention was created by BVM ventilations

- Intubation complications – DOPE
 - D = Dislodgment
 - O = Obstruction
 - P = Tension Pneumothorax
 - E = Equipment failure

- FREQUENTLY reassess…especially with every patient move!
 - Little movement is required to inadvertently extubate the pediatric patient
Tubes migrate with head movement

- Secure tube well
- Immobilize head in neutral position
- Never let go of tube
- ET tubes wind up in mainstem bronchi, due to short trachea

Breathing

- High metabolic rates + Low reserve capacity
 - = high sensitivity to airway/breathing problems
- Oxygenate and ventilate aggressively

• Surgical cricothyrotomy is not recommended in children < 8 - 10 years of age
 • Needle cricothyrotomy is preferred for children, if required at all

• Adequate ventilation and oxygenation are crucial to the seriously injured child
 - Higher demand for oxygen normally as compared to adults
 - Head injuries require adequate oxygenation to minimize secondary injury
• At a minimum, supplemental oxygen is indicated
Simple supplemental oxygen is usually adequate in the spontaneously breathing child
- If the child does not tolerate a mask or nasal cannula, blow-by oxygen is better than no oxygen
- Proceed slowly in the anxious or distrusting child

• BVM ventilation often is sufficient and preferable over ETT
• Complication of BVM ventilation gastric distention
 - May interfere with diaphragm movement
 - Increase risk of emesis & aspiration

• Assessment of the BP
 - Is seldom useful and may be difficult to obtain
 • Assess peripheral pulses
 • Skin color and temperature
 • LOC (Silence is not Golden)
 • Capillary refill
 - Hypotension will be a very late sign in the pediatric shock patient

• Rapid control of external bleeding is essential due to their small blood volume
• Hypovolemic shock may be seen as tachycardia, weak/thready pulse, AND poor skin perfusion or mental status
• Children have excellent compensatory mechanisms - UP TO A POINT!
 - Then they crash…irreversible shock
 - Hypotension is an ominous sign

• Circulation
 • Assessment of the BP
 • Is seldom useful and may be difficult to obtain
 • Assess peripheral pulses
 • Skin color and temperature
 • LOC (Silence is not Golden)
 • Capillary refill
 • Hypotension will be a very late sign in the pediatric shock patient

• Serious injuries may not be obvious externally
• Treatment
 – Oxygenation/Ventilation
 – Fluids: 20 ml/kg as a bolus – may need to repeat
 – Additional vascular access options: intraosseous and umbilical vein (newborn)

#1 cause of death in pediatric trauma
 – Large heads
 – Thin skulls
 – Poor muscle control

• Assess mental status
 – LOC, confusion, irritability/agitation, lethargy
 – Change in pupils

• Glasgow Coma Scale
 – Pediatric modification

• Assess for
 – scalp lactations/bleeding
 – rhino/otorrhea

• Control external hemorrhage

• Monitor for Signs of ICP
 – GCS <8
 – Pupils - asymmetric, dilated or nonreactive
 – Posturing: Decerebrate vs Decorticate
 – Vomiting
 – Bulging fontanelle

*Impending herniation
 • Cushing Response (bradycardia, hypertension, irregular respirations)
• If ↑ ICP suspected
 – Intubate if GCS <8
 – Controlled hyperventilation
 • ETCO2 goal 26-32 (normal ventilation 33-36)
 – Keep neck midline
 – adequate sedation/pain control (avoid shivering)
 – minimize noise & light exposure
 – elevate HOB if possible - Reverse Trendelenburg

• Resuscitate hypovolemic shock aggressively to keep adequate cerebral perfusion

• Rare. Usually at C1, C2, C3. Dislocations more common.

• Suspect if trauma involves
 – Sudden deceleration
 – Head injuries
 – Decreased LOC

• If spinal immobilization is needed, then do it.
 Resist temptation to pick up child and run.

• 2nd only to head trauma as cause of traumatic death

• 90% of pediatric chest trauma is blunt

• Chest wall is thinner and very elastic

• Thoracic muscles & subcutaneous tissue are less developed
 – Rib fractures are uncommon, bones are very compliant
 – Extensive intrathoracic injury (like pulmonary contusions)

• Tension Pneumothorax
 – Hypotension/poor perfusion
 – Unilateral or bilateral decreased breath sounds
 – Tracheal deviation
 – JVD
 – Respiratory distress

• Consider in
 – Blunt or penetrating trauma patients
 – Intubated patients who become suddenly unstable or difficult to bag despite suctioning
 – Patients with known rib fractures and SQ emphysema
• Medical Management
 – Consider RSI for severe respiratory distress
 – If signs of tension pneumo with hypotension and/or decreased oxygen saturation perform NTube decompression

• Needle Thoracostomy
 – 2nd intercostal space at the midclavicular line
 – 5th intercostal space at anterior axillary line

• For infants or small children with minimal SQ tissue, consider a 16 or 18 gauge catheter as an alternative to Cook Catheter

• If tension reoccurs, repeat needle decompression!

• Most common form of pediatric trauma
 – Usually blunt

• Liver, spleen injury more common than in adults
 – Abdominal cavity is small = relatively larger organs
 – Weak abdominal wall

• Assess for contusions, wounds or eviscerated tissues
• Gently palpate to assess tenderness, rigidity, guarding
 – Distention
 • May also be to air swallowing
 • Consider OG/NG placement

• Medical Management
 – Treat hypovolemia and shock aggressively
 – Cover open wounds with dry sterile dressing
 – Cover any eviscerated organs with sterile moist saline dressing
• Priorities ABC’s

• Orthopedic trauma rarely severe enough to warrant attention before head, chest, abdominal injury

• Pedi bones are soft & absorb/dissipate force before fracturing
 – Greenstick fracture common
 – Treat painful, tender or favored extremities as fractures

• Growth plate frequently involved

• Neurovascular injury - most common injury
 – Humerus
 – Femur

• Assess distal pulse, skin color, temp, cap refill, motor/sensory function

• Control bleeding by direct pressure and cover all open wounds with dry sterile dressings

• Pediatric patients have larger BSA
 – ↑ risk of fluid loss
 – ↑ risk of heat loss

• Smaller airway = early & aggressive management

• Parkland Formula
 – \(4 \times \text{wt in kg} \times \% \text{BSA}\)
 – \(\frac{1}{2}\) of this volume should be infused over 16 hours
 – Simplified, for the first 8 hours after injury, crystalloid infusion (ml/hr) = \((\text{wt in kg} \times \% \text{BSA burned})/4\)

• Children are not little adults

• Major injuries involve head and abdominal injury

• ABCs – TREAT AGGRESSIVELY

• Bradycardia is bad

• Are more prone to hypothermia & fluid loss

• A crying kid is good, quiet kids are bad

• Treat them like they are your own kids
Thank You!

Special thanks to
Sheila Crow
Stitchin’ Dreams Embroidery
wcsocrow@yahoo.com

For providing our Secret Question prize

Questions?
Contact: Samantha Roberts
509-242-4264
1-866-630-4033
robertss@inhs.org
Fax: 509-232-8344