Hypovolemic Shock and Tourniquets
Michael W. Day, RN, MSN, CCRN
Trauma Care Coordinator
Spokane, WA

Objectives
- Discuss etiology of hypovolemic shock
- Discuss assessment & treatment of hypovolemic shock
- Discuss indications, precautions & use of tourniquets

Shock

Cellular hypoperfusion and subsequent hypoxia at the cellular level

Types of Shock
- Cardiogenic Shock
 - Pump failure or dysfunction
 - Myocardial infarction
 - Heart valve dysfunction
 - Arrhythmias
 - Congestive heart failure
Types of Shock

- Distributive Shock
 - Neurogenic Shock
 - Anaphylactic
 - Sepsis

- Obstructive Shock
 - Compression of heart
 - Tension pneumothorax
 - Cardiac tamponade

- Hypovolemic Shock
 - Whole blood loss
 - Plasma losses
 - Burns
 - Hyperthermia
 - Focus on hypovolemic shock

Body Systems Response

- Body will attempt to maintain cellular perfusion
- Vascular system
 - Carotid and aorta receptors
 - Pressure - < 80 mm/Hg
 - Oxygen - * in PaO2
 - Carbon dioxide - * in PaCO2

- Vascular system
 - Receptor activation stimulates cerebral vasomotor center
 - Immediate vasoconstriction
 - Arterial/venous constriction
 - Arterial = * systolic BP
 - Venous = * right heart return
Body Systems Response

- Vascular Response
 - Overall increase in diastolic blood pressure
 - Vasomotor center activity will also activate SNS

Body Systems Response

- Cerebral system
 - Vasomotor center
 - Also reacts to decreases in brain blood supply
 - SBP < 50 mm/Hg will cause ischemia & ↑ CO₂
 - CO₂ accumulation will activate vasomotor center
 - Immediate vasoconstriction as described above to ↑ BP

Body Systems Response

- Adrenal system
 - Focus of SNS stimulation
 - Nore- & Epinephrine released
 - Epinephrine increases
 - Heart rate
 - Cardiac contractility
 - Vasoconstriction
 - Norepinephrine → vasoconstriction
 - Both cause s/s of shock
 - Tachycardia
 - Pale, cool, clammy skin
 - Anxiety
Body Systems Response

- **Adrenal system**
 - Aldosterone
 - Released immediately
 - Causes kidneys to hold sodium
 - Water follows sodium
 - Powerful effect on BP
 - Takes about 20 minutes

Body Systems Response

- **Renal system**
 - Low BP will release renin from kidney
 - Renin combines with angiotensinogen → angiotensin I
 - Angiotensin I + ACE in lungs → Angiotensin II

Body Systems Response

- **Renal system** (continued)
 - Angiotensin II effects
 - Arteriole constriction = ↑ SBP
 - Vein constriction = ↑ pre-load to right ventricle
 - Release of more aldosterone from adrenal glands

Body Systems Response

- **Hepatic system**
 - Provides needed energy
 - Glycogen → glucose
 - Prolonged hypotension may cause “shock liver”
 - Affects lactic acid levels

Body Systems Response

- **Pulmonary system**
 - Switch from aerobic to anaerobic metabolism
 - Lactic acid produced → metabolic acidosis
 - ↑ respiratory rate & depth
 - “Blowing off” CO₂ will try to compensate for acidosis
Body Systems Response

- Pulmonary system
 - More oxygen taken in to offset hypoxia
 - Affected by respiratory disease and trauma
 - Chest
 - Abdomen
 - Brain

Assessment of Shock

- History
 - Trauma
 - Mechanism of injury?
 - Time from injury?
 - Underlying disease or illness?
 - Previous treatment of injuries?

Assessment of Shock

- History
 - Pulse
 - Will usually increase in shock
 - Ability to increase affected by:
 - Medications
 - Advanced age
 - Systolic blood pressure

Assessment of Shock

- History
 - Mean Arterial Pressure (MAP)
 - May more accurately reflect tissue perfusion than SBP
 - Normal = 70 – 100 mm/Hg
 - MAP = (SBP-DBP)/3 + DBP
 - Ex: (120-72)/3 + 72 = 88

 - Narrowing pulse pressure an ominous sign
Assessment of Shock

- History
 - Respiratory
 - Respiratory rate & depth usually
 - Underlying diseases may impact ability to
 - Pulse oximetry (SpO₂)

- History
 - Have the vital signs changed significantly?
 - In which direction are they trending?

Assessment of Shock

- History
 - Estimated blood loss
 - Hard to accurately estimate
 - May be affected by:
 - Body size
 - Cardiovascular fitness
 - Chronic disease

- Inspection
 - Level of consciousness (LOC)
 - Restlessness
 - Anxiety
 - Confusion
 - Breathing rate & effectiveness
 - Active external bleeding?

Assessment of Shock

- Inspection
 - Changes in skin
 - Color
 - Temperature
 - Moisture
 - Check mucous membranes in persons of color

- Inspection
 - Neck
 - External jugular distension
 - Tension pneumothorax
 - Cardiac tamponade
 - Trachea away from midline
 - Tension pneumothorax
 - Aortic arch dissection (right shift)
Assessment of Shock

- Inspection
 - Chest
 - Obvious fractures
 - Bruising
 - Impaled objects – Stabilize

Assessment of Shock

- Inspection
 - Abdomen
 - Bruising
 - Left upper quadrant – Spleen
 - Right upper quadrant – Liver
 - Distension
 - Impaled objects – Stabilize

Assessment of Shock

- Inspection
 - Abdomen
 - Bruising
 - Left upper quadrant – Spleen
 - Right upper quadrant – Liver
 - Distension
 - Impaled objects – Stabilize

Assessment of Shock

- Inspection
 - Abdomen
 - Bruising
 - Left upper quadrant – Spleen
 - Right upper quadrant – Liver
 - Distension
 - Impaled objects – Stabilize

Assessment of Shock

- Palpation
 - Skin
 - Temperature
 - Moisture
 - Pulses
 - Upper versus lower extremities
 - Strength

Assessment of Shock

- Palpation
 - Injured area
 - Chest - Fractures, soft tissue
 - Abdomen
 - Guarding
 - Rigidity
 - Both?

Assessment of Shock

- Palpation
 - Injured area
 - Pelvis
 - Iliac crests – anterior/posterior
 - Iliac crests – lateral/medial
 - Symphysis – anterior/posterior
 - Extremities – Soft tissue damage; deformities
Assessment of Shock

- Auscultation
- Blood pressures
 - Compare UE & LE, if pulses different
 - Use Doppler, if necessary
 - Pulse pressure = SBP – DBP
- Breath sounds
- Heart sounds

Shock Treatment

Controlling any serious external bleeding should take priority

- Controlling external bleeding
 - Direct pressure
 - Pressure dressing
 - Tourniquet

Shock Treatment

- Elevation of extremity
 - Not supported by research
 - May convert closed fracture to open fracture
 - **NOT RECOMMENDED**

Shock Treatment

- Pressure point compression
 - Not supported by research
 - Collateral circulation restores circulation with minute or two
 - One care provider removed from treatment
 - Difficulty to maintain while moving
 - **NOT RECOMMENDED**
Shock Treatment

- Fluid Resuscitation
 - Two, large, short bore (14–16 Ga)
 - Intraosseous (IO) devices
 - FAST 1
 - Bone Injection Gun (BIG)
 - EZ-IO

- Fluid Resuscitation
 - Use blood tubing, if available
 - Infuse warmed IV solution (LR, NS) to maintain SBP > 90 mm/Hg

- Fluid Resuscitation
 - Uncrossmatched blood after 2 L
 - O negative = universal donor
 - O positive – Ok for most men
 - 98% of black men
 - 85% of white men
 - Pre-menopausal women • Rh immunoglobulin after transfusion

“Persistent infusion of large volumes of fluids in an attempt to achieve a normal blood pressure is not a substitute for definitive control of bleeding.” - ATLS

Tourniquets

- History
 - First use noted by Roman surgeon Galen
 - French & German surgeons described in 16th and 17th centuries
 - Petit first used “tourniquet” (to turn) for screw-like device
Tourniquets

- Used in Crimean and US Civil War, basis for negative perceptions
 - Poor planning
 - Inadequate education
 - Prolonged time to care (> 24 hours)
 - Tourniquets thought to promote gangrene & amputations
 - CSA General Johnson

Tourniquets

- World War I
 - Shorter time to definitive care, but still long
 - Use of elastic tourniquets
 - Advocated removed as soon as identified
 - Advice to periodic loosen to allow for collateral circulation

Tourniquets

- World War II
 - More awareness of tourniquet applicability and placement
 - Literature still indicated that tourniquet = amputation

Tourniquets

- World War II
 - End of war tourniquet study found NO:
 - Gangrene
 - Thromboembolic events
 - Skin damage
 - Excessive edema
 - Nerve damage

- Advice to NOT periodically remove tourniquets
 - Shorter delays to definitive care but still > 12 hours
Tourniquets

- Korean War
 - Debunked myth that tourniquet = amputation
 - Shorter delays to definitive care but still > 9 hours

- Vietnam War
 - Ad hoc use of tourniquets d/t lack of awareness and training
 - Shorter delays to definitive care d/t helicopters, but still > 2 hours

- Recent research
 - Dorlac
 - Retrospective analysis of 5.5 years of data from 2 Level I trauma centers in Houston, TX
 - Evaluated extremity injuries & “+” vital signs in field with CPR on arrival
 - 8 of 14 patients had injuries that could have been successfully treated

- Recent research
 - Lakstein
 - Israeli experience from 1997 to 2000
 - 550 injured soldiers and civilians
 - Tourniquets 78% effective

- Recent research
 - Beekley
 - Operation Iraqi Freedom – 2003 to 2004
 - 165 patients with vascular injuries or amputations
 - Four of seven deaths potentially preventable with tourniquets
 - No identified complications

- Recent research
 - Kragh (multiple studies 2006 from Iraq)
 - 11% mortality with tourniquets in field vs. 22% applied in ED
 - 90% survival when placed prior to shock vs. 18% placed after shock
 - 0% survival for 10 patients where tourniquet indicated and not applied vs. 87% survival when indicated and applied
Tourniquet Take Home Points

- Most effective when applied BEFORE shock
- Hemorrhage control associated with:
 - Less blood loss
 - Less need for transfusion
 - Improved survival

Tourniquet Take Home Points

- Exsanguinating extremity trauma leading cause of preventable death in battle
- Tourniquet use
 - Permits more effective resuscitation
 - Lengthens survival time
 - Lengthens time for resuscitation
 - Allows concurrent resuscitation for patient or other

Proper training has the greatest influence on tourniquet effectiveness

Tourniquet Use

- Use the simplest measure to stop bleeding!
- Direct pressure
- Pressure dressing
- Tourniquet

Tourniquet Use

- Device options
 - Makeshift less effective & should be used with caution
 - “Spanish” windlass
 - Cravat dressing folded to 4” width
 - Knotted above wound
 - Rigid rod placed on knot
 - Second knot tied over rod
 - Rod twisted until bleeding stops
Spanish Windlass

Tourniquet Use

- Combat Application Tourniquet (CAT)
- Emergency Military Tourniquet (EMT)
- Special Operations Force Tactical Tourniquet (SOFTT)

CAT

EMT

SOFTT

Tourniquet Use

- Application Site
 - Apply just proximal to wound
 - Apply OVER clothing ONLY to rapidly move or extricate patient
- Avoid pockets
- Loosening of tourniquet MORE likely with movement
Tourniquet Use

- Application Site
 - **DO NOT COVER Tourniquet**
 - Never apply over a joint
 - When patient is in safe environment
 - Remove clothing to identify all wounds
 - Re-apply tourniquet 2 – 3 ABOVE bleeding site

- Application tightness
 - Complications if distal arterial flow is NOT stopped
 - MORE bleeding d/t vein compression
 - Expanding hematoma
 - Compartment syndrome
 - ♦ mortality
 - [Kragh, 2008, J Trauma]

- Application tightness
 - If bleeding continues with one correctly applied tourniquet:
 - Do NOT ♦ pressure of existing tourniquet
 - Apply 2nd tourniquet ABOVE 1st
 - 2nd tourniquet increases effectiveness from 82% to 92%

- Application tightness
 - The larger the limb, the tighter the tourniquet will need to be
 - Reassess wound & tourniquet after EVERY movement of patient

- Time limit
 - Note tourniquet placement:
 - Write “T” and time on patient’s forehead with indelible marker
 - Alternative: Write “T” and time on tape and attach to tourniquet
 - Remains in place until definitive care reached
 - Distal portions of limbs (hands, feet) can tolerate long tourniquet times
Tourniquet Use

- Pain management
 - Pain is typical in a conscious patient and does NOT indicate:
 - Incorrect tourniquet application
 - Need to remove tourniquet
 - Consider pain management for conscious patients

Tourniquet Use

- Complications
 - Tourniquet “palsy”
 - Usually incomplete, temporary and minor
 - More likely in upper extremity
 - May be more common with pre-existing neuropathies
 - Limb shortening rare

Tourniquet Use

- Complications
 - Muscle breakdown
 - May cause myoglobin release > acute renal failure
 - Monitor serum markers
 - Potassium
 - Acidosis
 - Myoglobin
 - Creatinine kinase

Tourniquet Errors

- Not using a tourniquet when it should be used
- Using a tourniquet when it should NOT be used
- Placing tourniquet too proximally
- Not tightening tourniquet effectively
- Not taking tourniquet off when possible
- Periodically loosening the tourniquet to allow intermittent blood flow

Tourniquets

“The fate of the wounded rests in the hands of the one who applies the first dressing.”

PHTLS
Questions?
Contact: Carolyn Stovall
509-242-4264
1-866-630-4033
stovalc@inhs.org
Fax: 509-232-8344

Special thanks to
Sheila Crow
Stitchin’ Dreams Embroidery
wcsocrow@yahoo.com

For providing our Secret Question prize